Computational inference methods for selective sweeps arising in acute HIV infection.
نویسنده
چکیده
During the first weeks of human immunodeficiency virus-1 (HIV-1) infection, cytotoxic T-lymphocytes (CTLs) select for multiple escape mutations in the infecting HIV population. In recent years, methods that use escape mutation data to estimate rates of HIV escape have been developed, thereby providing a quantitative framework for exploring HIV escape from CTL response. Current methods for escape-rate inference focus on a specific HIV mutant selected by a single CTL response. However, recent studies have shown that during the first weeks of infection, CTL responses occur at one to three epitopes and HIV escape occurs through complex mutation pathways. Consequently, HIV escape from CTL response forms a complex, selective sweep that is difficult to analyze. In this work, we develop a model of initial infection, based on the well-known standard model, that allows for a description of multi-epitope response and the complex mutation pathways of HIV escape. Under this model, we develop Bayesian and hypothesis-test inference methods that allow us to analyze and estimate HIV escape rates. The methods are applied to two HIV patient data sets, concretely demonstrating the utility of our approach.
منابع مشابه
Computational Inference Methods for HIV-1 Selective Sweeps Shaped by Early Cytotoxic T-Lymphocyte Response
Cytotoxic T lymphocytes (CTLs) play an important role in shaping HIV-1 infection. In particular, during the first weeks of infection, CTLs select for multiple escape mutations in the infecting HIV population. In recent years, methods have been developed that use intra-patient escape mutation data to estimate rates of escape from CTL selection. The resultant escape rate estimates have been used ...
متن کاملDifferential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell
In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...
متن کاملEstimating the Strength of Selective Sweeps from Deep Population Diversity Data
Selective sweeps are typically associated with a local reduction of genetic diversity around the adaptive site. However, selective sweeps can also quickly carry neutral mutations to observable population frequencies if they arise early in a sweep and hitchhike with the adaptive allele. We show that the interplay between mutation and exponential amplification through hitchhiking results in a cha...
متن کاملA new method based on fourth kind Chebyshev wavelets to a fractional-order model of HIV infection of CD4+T cells
This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integrati...
متن کاملMore efficacious drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1
In the early days of HIV treatment, drug resistance occurred rapidly and predictably in all patients, but under modern treatments, resistance arises slowly, if at all. The probability of resistance should be controlled by the rate of generation of resistant mutations. If many adaptive mutations arise simultaneously, then adaptation proceeds by soft selective sweeps in which multiple adaptive mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 194 3 شماره
صفحات -
تاریخ انتشار 2013